

Just Great Software

Custom Syntax Coloring

Scheme Editor

Manual

Version 5.3.0 — 2 May 2024

Published by Just Great Software Co. Ltd.
Copyright © 2000–2024 Jan Goyvaerts. All rights reserved.
“Just Great Software” is a trademark of Jan Goyvaerts

 i

Table of Contents

1. Introduction ... 2
2. General Information .. 4
3. Reliable Coloring Schemes .. 6
4. Fast Coloring Schemes .. 8
5. Breaking Schemes ... 10
6. Preview And Test ... 12
7. Coloring Scheme ... 14
8. Subschemes.. 22
9. Regular Expressions ... 28
10. Working with Named Colors ... 29
11. RGB Preview... 32
12. Path Placeholders ... 33
13. Legacy Brackets .. 35

2

1. Introduction

Welcome to the documentation for the Just Great Software Custom Syntax Coloring Scheme Editor.

This tool allows you to build custom syntax coloring schemes for EditPad and AceText . Version 5 of the
scheme editor creates schemes compatible with EditPad Pro 8.0.0 and later and AceText 4.0.0 and later.

You can find the syntax coloring schemes that ship with EditPad and AceText in the folder where you
installed the software. The default installation folder is a subfolder of C:\Program Files\Just Great Software.
Each .jgcscs file contains one syntax coloring scheme. It is a good idea to study some of those schemes
before attempting to create your own. You can download schemes created by other EditPad and AceText
users at https://www.editpadpro.com/cscs.html. You can share your own schemes there too.

Schemes that you have downloaded are placed in product-specific folders under %APPDATA%\JGsoft
under your Windows user profile. You can navigate to this folder by typing or pasting
%APPDATA%\JGsoft in the address bar in Windows Explorer. You should place your own custom
schemes in that folder too. You can do this easily by selecting EditPad Lite 8, EditPad Pro 8, or AceText 4 in
the drop-down menu of the Save As button. If a .jgcscs file with the same file name exists in both the
AppData folder and the Program Files folder, then the file in the AppData folder takes precedence.

The tree view at the left hand side of the scheme editor shows you the complete structure of the syntax
coloring scheme. The settings presented in the right hand side of the scheme editor depend on the node that
you have selected in the tree. You can change the width of the tree view by using the mouse to drag the
(invisible) splitter bar that sits immediately to the right of the tree view.

Select the topmost node in the tree to provide some general information about your syntax coloring scheme
and the files it applies to. It’s important to do this if you plan to share your scheme with other users.

The second node from the top is always labeled Main Coloring Scheme. There you create the actual syntax
coloring scheme by adding scheme elements. The scheme elements appear as child nodes under the Main
Coloring Scheme node. These are essentially a series of regular expressions and additional rules that are used
to perform the actual syntax coloring.

You can add subschemes to create more complex syntax coloring schemes. Subschemes appear as sibling
nodes below the Main Coloring Scheme node. Subschemes have their own scheme elements as child nodes.

The Legacy Brackets node at the bottom is only provided with backward compatibility for schemes created
for older versions of EditPad Pro . New schemes should define brackets as part of the scheme elements.

The bottom half of the scheme editor provides an editor to preview and test your syntax coloring scheme. It
has a toolbar with various buttons that correspond to similar buttons and menu items in EditPad Pro.

If you have a large widescreen display then you can move the preview to the right hand side of the editor by
clicking the View button on the top toolbar (third button from the right) and then selecting Horizontal. The
item is only enabled if your monitor is wide enough. In horizontal mode the width of the settings panel is
fixed and the preview takes up all remaining space. You can only change the width of the tree view using its
splitter bar.

3

If you have two or more monitors then you can put the preview on a different monitor by clicking the View
button on the top toolbar and then selecting Dual Monitors. The preview then has its own window with its
own taskbar button. If you close the preview window then it is docked back onto the main window. Close the
main scheme editor window to close the whole application. If you close the application without separately
closing the preview window then the size and position of both windows will be restored next time you start
the application.

Before creating your first syntax coloring scheme, make sure to read the topic about Reliable Coloring
Schemes topic. It’s not enough to create a scheme that properly highlights a valid file. It also needs to work
reliably with files in various stages of editing that do not adhere (yet) to the file format you’re working with. If
your scheme will be applied to very large files then you should also read the Fast Coloring Schemes topic. If
your scheme needs to deal with files without line breaks then read the Breaking Schemes topic.

4

2. General Information

Select the topmost node in the tree to provide some general information about your scheme. This
information is used to build the list of available schemes when you upload your scheme to
https://www.editpadpro.com/cscs.html. Please fill out this page completely.

Scheme Name: The name of your syntax coloring scheme. This name is presented to the user when a syntax
coloring scheme should be selected. Each scheme should have a unique scheme name. If two schemes have
the same name they will appear right next to each other and the user won’t be able to distinguish them.
Changing the name of a scheme won’t break any preferences or file type configurations that use the scheme.
Those reference schemes by their file names.

File Extensions: The file extensions typically used by files to which your coloring scheme should be applied.
Note that this item is purely informational. Any scheme can be applied to any file, no matter its extension.
You should list extensions as full file masks, delimited by semicolons, e.g.: *.html;*.htm;*.shtml

Author Name: Your name.

Author Email: Email address that can be used to send you comments about your scheme. Your email
address is not shown on the EditPad Pro web site when you upload your coloring scheme. It can be seen by
people who open your scheme in the scheme editor.

Author Web Site: Complete URL of your web site. If you upload your scheme to EditPad Pro’s web site
then your name will be linked to this URL.

File Type Web Site: Complete URL of the web site that is the central source of information about the file
type your scheme provides syntax coloring for. Try linking directly to a page with relevant information, rather
than a top-level domain, unless the top-level domain is specific to the file type.

Block|Comment: The Block|Comment command in EditPad and the Format|Comment Block command
in AceText use these two items to comment out a block of text. If single-line comments are supported by the
file format you’re creating a scheme for, enter the character that start a single-line comment in the left hand
field, and leave the right hand field blank. If multi-line comments are supported, enter the characters that start
a multi-line comment in the left hand field, and the characters that close it in the right hand field. If both
single-line and multi-line comments are supported, enter the characters for the single-line comment only. The
Block|Comment command is more flexible when used with single-line comments. If no comments are
supported, leave both fields blank.

Comments shown to users: If there’s anything important that people should know before using your
scheme, you can enter that information into the edit box in the upper right corner. Particularly if you’re
creating a scheme for a file type for which one or more schemes are already available, explain what makes
your scheme different. This text is displayed on the web site when people download syntax coloring schemes.
So try to be brief in order to keep the length of the page with all the schemes reasonable. This is not the place
for technical notes for people who may want to edit or build upon your scheme. The Main Coloring Scheme
section has a space for developer notes.

Example: In the lower right corner edit box, enter a handful of lines of text as a small example file. Try to
put as many different scheme elements (colors) in the example as you can. The color palette customization
dialog in EditPad and AceText shows this example text so the user can preview your scheme with their

5

custom palette. In that dialog the user can also double-click text in the example to select the color that is
applied to that text.

6

3. Reliable Coloring Schemes

It is very important to test your coloring scheme thoroughly. Make sure to test it on invalid text such as
strings with a missing closing quote, etc. Test your scheme by performing normal and abnormal (typing
nonsense) editing operations in the test editor to see if your scheme properly updates itself. This may require
the addition of additional syntax elements that match unclosed strings and other stuff that is not part of the
file format you are trying to color, but could appear while the user is editing his files.

Say you are creating a scheme for a language that has single-line double-quoted strings. If you specify
"[^"\v]*+" as the regular expression then the string does not get its color until both double quotes have
been entered. But most text editors color everything up to the end of the line as a string while the second
double quote is missing. The schemes supplied with EditPad and AceText do this as well. Therefore,
"[^"\v]*+"? is a better regex in this case. This colors everything after a double quote up to the next double
quote or the end of the line as a string.

When a text file is being edited, it is only partially parsed again to update the syntax coloring. Only the
paragraphs that have been modified are parsed again completely. The parser starts from the last syntax change
before the start of the modified paragraphs. It continues until it reaches a point after the modified paragraphs
where the newly applied syntax coloring is identical to the previous coloring.

This has consequences if your scheme contains elements that can span multiple paragraphs. There is no
guarantee that such elements will not be chopped in pieces when only certain paragraphs are parsed again.
Therefore, it is important that the scheme includes both the correctly terminated scheme element and the
non-terminated element which continues until the end of the file. While only the former should appear in a
file that adheres to the syntax you are trying to create a scheme for, the non-terminated version can appear
while the user is editing the file. This makes sure that the syntax coloring is properly updated while the user's
editing actions break and fix the proper syntax.

For example, to color double-quoted multi-line strings, use two scheme elements using the regexes
"[^"]*+" and "[^"]*+. You need to use two different scheme elements so the software can differentiate
between a properly terminated and an endless double-quoted string. This is important for the software to be
able to determine if it needs to continue re-coloring the file beyond the last modified paragraph, and how far.
The element with regex with the closing quote needs to be above the one without the closing quote so that it
takes precedence. For syntax elements that cannot span multiple lines/paragraphs, you can use a single
scheme element as described above, because the entire paragraph is always be re-colored.

Another way is to use a toggle subscheme to color multi-line items. The schemes supplied with EditPad and
AceText use this method. For example, for double-quoted multi-line strings, create an element in the main
scheme that matches nothing but a double quote. Have that element toggle to a subscheme. The subscheme
also needs have an element that matches a double quote. But this element toggles back to the main scheme. If
quotes can be escaped inside strings then you can easily handle that with a second element in the subscheme
using the regular expression \\. which matches a literal backslash and whichever character follows it. If the
file has an unterminated string then the element in the subscheme that matches the closing quote never finds
its match. The subscheme then highlights everything until the end of the file. This and the fact that the
opening and closing quotes are matched by separate elements automatically ensures that colors are updated
correctly when multi-line strings are edited.

Because of all of this, it is very important that you test your scheme while doing some heavy editing. Try to
break the syntax rules and see if your scheme colors everything properly. Color should be correct when the

7

file is syntactically valid. Colors should be reasonable when the file is syntactically invalid so that not too
much flashing takes place while the file transitions between valid and invalid syntax as it is edited.

Finally, do not try to do too much in your syntax coloring scheme. The syntax coloring scheme is re-applied
with each and every keystroke. If your scheme is too complex then EditPad will need a long time to apply it.
If EditPad determines that your scheme is taking too long then it displays the file without syntax coloring
until your scheme has finished updating. This is not a problem when it happens when the user jumps to the
end of a long file for the first time. But it is very annoying if it happens with each and every keystroke.

The syntax coloring system is designed to provide visual cues to the user. Using a select set of different colors
for different elements of the text makes it far easier for the human eye to navigate the text. But using too
many colors for too many different things confuses the eye, rather than guiding it. The schemes are also not
designed for complex syntax validation. Such validation would need to be done in the background, rather
than with each key press, as is appropriate for syntax coloring. For example, if the file format you are
designing a scheme for has a certain number of reserved words that can be used in a specific way, let your
syntax coloring scheme color those reserved words without bothering to check if they were used
appropriately. The latter is a job for a compiler or interpreter, not for a syntax coloring scheme.

8

4. Fast Coloring Schemes

There are two kinds of syntax coloring schemes. Most schemes require the whole file to be processed up to
the part of the file that is visible on the screen. Some schemes only require the visible part to be processed.
Obviously, the latter kind will be applied orders of magnitude faster when working with large files, since only
a tiny part of the file needs to be processed.

The reason most schemes require the whole file to be parsed is that they have elements that can span multiple
lines. For example, many programming languages have multi-line comments or strings. Therefore, everything
before the visible part of the file must be scanned to check if there are any unclosed multi-line comments or
strings that continue into the visible part of the file.

EditPad does cache syntax coloring information. So the whole file isn’t reprocessed with every edit. However,
the first time you scroll down a lengthy file, it may take a while for syntax coloring to appear.

If a scheme does not have elements that can span multiple lines, then EditPad can safely start applying it
from the start of the first visible line. Whatever precedes the visible part cannot affect the colors of the visible
part. Since the visible part is always very small, syntax coloring is applied instantly, even when the file is huge.

There are a few easy rules to make sure your scheme falls into the ultra-fast category. First, it cannot have any
subschemes of type “toggle”. Such subschemes may continue onto the next line. All other types of
subschemes, including “toggle until end of line” and “toggle within detail” are permitted. These subscheme
types guarantee the subscheme doesn’t run beyond the end of the line or beyond the regex match of the
element that uses the detail scheme.

Second, none of the regular expressions should be able to match line breaks. To do so, make sure “dot all” is
turned off for all elements. None of the regular expressions should contain tokens such as \r, \n, \s, \R or
\v that match line break characters. All negated character classes, however, should contain \v or \s to
exclude all line breaks. Excluding only \r and \n is not sufficient. EditPad supports all Unicode line breaks.
The shorthand for vertical whitespace \v matches them all. The shorthand for all whitespace \s does too.
Your regular expressions should also not negated shorthands such as \W and \D as these too can match line
breaks.

If your scheme uses bracket matching then each scheme element that defines any brackets must define both
the opening and the closing bracket. Otherwise bracket matching may need to look on lines before or after
the visible part of the file to look for the matching bracket. Schemes that meet all the rules except the bracket
matching rule for fast schemes can still be used as fast schemes by EditPad. If the file is huge, bracket
matching is automatically disabled. When bracket matching is disabled (regardless of file size) the scheme is
applied to the visible part of the file only. When bracket matching is enabled (meaning the file isn’t huge) the
scheme is applied to the whole file like a non-fast scheme.

Help From The Scheme Editor

The scheme editor can tell you whether your scheme is fast or not. Click the Fast Scheme? button on the
toolbar above the preview editor. You’ll get a message box explaining the situation. The first paragraph
explains what a fast scheme is. Then the message either says “This is a fast coloring scheme” or explains why
your scheme is not fast. The first subscheme or regex that doesn’t follow the rules is selected. Adjust it and
click the button again to see if any others need adjustments.

9

If your scheme follows the rules for fast schemes then EditPad’s file type configuration lists it in both the
“syntax coloring scheme” drop-down list and the “syntax coloring scheme for huge files” drop-down list in
the file type configuration. If not then your scheme is only listed in the “syntax coloring scheme” drop-down
list.

Examples

It may be useful to create fast variants of regular coloring schemes. For example, the various SQL schemes
supplied with EditPad also come in fast variants. Modern SQL variants support multi-line strings and
comments. SQL files with data dumps can be incredibly large. The fast variants of the schemes don’t
recognize multi-line comments and strings. They can be used to provide syntax coloring for huge SQL files,
with the only trade-off that multi-line comments and strings won’t be colored properly. In EditPad’s file type
configuration you can select the full-featured SQL scheme from the “syntax coloring scheme” drop-down list
and the fast scheme from the “syntax coloring scheme for huge files” drop-down list. This way you get the
best syntax coloring when the file size is reasonable and still get some syntax coloring when the file size is
huge. The limitations of the fast scheme may not even be an issue if you configure your data dump tool not
to use escape characters for line breaks in strings.

The schemes for INI files, JSON, and Visual Basic included with EditPad are fast schemes when bracket
matching is disabled. These schemes don’t have any trade-offs. These file formats don’t have any syntactic
elements that can span multiple lines.

10

5. Breaking Schemes

Some files may not contain any line breaks at all. This is common for computer-generated XML and JSON
files, for example. Such files can’t be practically viewed or edited with a text editor. Fortunately, EditPad Pro
is capable of automatically adding line breaks and indentation to such files. It can do this with a syntax
coloring scheme that meets the rules for a “breaking” scheme.

A “breaking” scheme must have at least one element that has “break and indent” set to the rules for braces or
for markup tags or to a custom rule that automatically breaks before or after. Those elements define the
places where EditPad Pro can insert line breaks.

EditPad Pro can also add indentation when adding line breaks. The “indent by one step” and “outdent by
one step” rules increase and decrease the level of indentation of the line after the line break. The user can
configure the size of the indentation step on the Tabbing page in the file type configuration in EditPad Pro.
These two rules and “keep indentation level” are the only indentation rules allowed in “breaking” schemes.
Aligning with regex matches or brackets is not supported because column positions are not calculated while
breaking an entire file.

For performance reasons, EditPad Pro does not use “detail” subschemes when breaking and indenting single
line files. A “breaking” scheme can have “detail” subschemes. But those subschemes should not have any
elements with “break and indent” set to anything other than “don’t break; don’t indent”.

It does not matter whether the scheme meets the rules for “fast” schemes. Files without line breaks have to
be processed entirely anyway.

Testing Breaking Schemes

The scheme editor can tell you whether your scheme is a “breaking” scheme or not. Click the Breaking
Scheme? button on the toolbar above the preview editor. You’ll get a message box explaining the situation.
The first paragraph explains what a “breaking” scheme is. Then the message either says “This scheme can be
used to add line breaks to files that have none” or explains it explains why that is not the case. Adjust the
scheme and click the button again.

If you use the Open button or its drop-down menu to open a file that does not have any line breaks, then
the scheme editor keeps an in-memory copy of the file as it existed (without line breaks) when you opened it.
Whenever you preview a scheme, the scheme editor reloads the sample from that in-memory copy. If the
scheme is a “breaking” scheme, line breaks are added to the sample according to the scheme’s rules when the
sample is reloaded. Otherwise, the sample is displayed without any line breaks. If you already previewed a
“breaking” scheme before you opened the file without line breaks, then line breaks are added to the displayed
sample immediately.

Examples

JSON.jgcscs is a “breaking” scheme. The JSON format is simple enough. No detail subschemes are needed.
So the same scheme can be used for coloring JSON files as for adding line breaks to JSON files that don’t
have any.

11

XML.jgcscs and XML_fast.jgcscs both use detail subschemes to apply different colors to different parts of
XML tags. The elements that match angle brackets in those detail subschemes specify the “break and indent”
rules. This allows those schemes to provide automatic breaking and indentation while typing. But they cannot
be used to add line breaks to XML files that have none.

XML_break.jgcscs was created specifically for adding indentation to XML files. This is a very simple scheme.
It has only the bare minimum of elements to properly match XML tags. It has no subschemes. This makes
the scheme very quick. The elements that match the XML tags define the “break and indent” rules.

12

6. Preview And Test

The bottom half of the scheme editor is a text editor control where you can preview and test your syntax
coloring scheme. It has its own toolbar with various commands and options that allow you to test how the
scheme behaves when you edit a file.

The Open button lets you open any text file. It has a drop-down menu with a history of recently opened
files.

The Preview button applies your syntax coloring scheme to the sample file. It also applies it to the example
that is part of your scheme’s general information. If there is a problem with the scheme, such as an invalid
regular expression, you’ll get a popup message. The offending scheme element is selected.

Changes you make to your scheme are not automatically applied to the sample. You have to click the Preview
button again each time you want to test the changes you’ve made. Schemes may be temporarily invalid while
you edit them. So the sample editor keeps the most recent successful preview until you click the Preview
button again.

The Fast Scheme? button explains the rules of “fast” syntax coloring schemes. It tells you whether your
scheme meets those rules or why it does not. Such schemes only need to parse the visible part of the file. This
makes them very fast and independent of the size of the file.

The Breaking Scheme? button explains the rules of “breaking” schemes. It tells you whether your scheme
meets those rules or why it does not. EditPad Pro can use such schemes to add line breaks to files that have
none.

The Color Palette button lets you pick the color palette for the preview. The color palette translates the
named colors that you can select in the scheme editor into actual colors. The Standard Palettes are those
that are built into our products. Your scheme should work well with those. The palette is not saved into the
scheme. It only affects the preview. If you created custom palettes in EditPad Lite 8, EditPad Pro 8, or
AceText 4 then you can select those from separate submenus.

The Dark Theme item at the bottom of the Color Palette menu toggles the entire user interface of the
scheme editor between the standard Windows them and a dark theme.

The Word Wrap button toggles between wrapping long lines at the edge of the preview editor and not
wrapping lines.

The next set of five buttons lets you test the bracket matching settings of your scheme. They are disabled if
your scheme does not define any brackets. Bracket highlighting is always enabled in the preview. When a pair
is highlighted, Go to Matching Bracket moves the cursor from one highlighted bracket to the other. Go to
Unmatched Bracket moves the cursor to the nearest bracket that does not have a matching bracket.
EditPad has these two commands in its Go menu.

Between Matching Brackets selects the text between the highlighted pair of matching brackets. If that text
is already selected, the selection is expanded to include the brackets. If they are already included, the selection
is expanded to the pair of matching brackets that the selected brackets are nested inside of. EditPad has the
same command in its Select menu.

13

Insert Matching Brackets generates the matching bracket for the highlighted unmatched bracket. This only
works if the scheme element that defines the unmatched bracket specifies text to generate a bracket. It works
for unmatched opening brackets when the cursor is after them and for unmatched closing brackets when the
cursor is before them. Auto Match Brackets automatically generates a closing bracket when you type an
opening bracket if the scheme element that defines the opening bracket specifies a bracket to be generated
automatically. EditPad has this command and option in its Edit menu.

The next two buttons allow you to the rules for breaking and indentation of your scheme. They are disabled if
your scheme does not have any elements that specify automatic breaking or indentation. Turning on the Auto
Indent option makes the preview editor use the scheme’s rules to increase or decrease the amount of
indentation on the newly entered line when you press the Enter key on the keyboard. Turning on the Auto
Break option makes the preview editor automatically insert line breaks as specified by your scheme.
Automatically inserted line breaks are always automatically indented too. EditPad Pro has the same options in
the Options menu. The preview editor does not have a Keep Indent option. This is always enabled. When
auto indent does not apply, pressing Enter indents the new line by the same amount as the previous line.

Scheme elements may set “breaking and indent” to treat the element as a brace or as a markup tag. The
drop-down menu of the Auto Break button lets you choose from an number of styles for breaking and
indenting braces. It also lets you toggle whether markup tags that contain mixed content should have
automatic line breaks added to that mixed content. These settings are not saved into the syntax coloring
scheme. They only affect the preview. In EditPad Pro, the user of the scheme can choose their own style for
breaking and indenting braces and markup tags on the Brackets page in the file type configuration. EditPad
Pro’s help file explains the different styles for brackes and markup in detail.

The next three buttons allow you to test the quote conversion rules of your scheme. Adjust Quotes does a
one-time adjustment of the quotes in the selection following the scheme’s rules in the same way as the
Convert|Quotes|Adjust Quotes command in EditPad Pro and AceText. Auto Quotes automatically adjusts
quotes after you’ve typed them in the same way as the Convert|Quotes|Auto Adjust Quotes toggle in
EditPad Pro and AceText. If all your elements and subschemes specify “don’t convert quotes” then these two
buttons are disabled in the scheme editor. But EditPad Pro and AceText only disables their Adjust Quotes
command. They do not disable Auto Adjust Quotes. Instead Auto Quotes converts all straight quotes to
smart quotes when the syntax coloring scheme offers no quote conversion rules. The Quotation Style
button lets you choose the quotation style for the preview editor. This style is not saved into the scheme. In
EditPad Pro and AceText users can choose their own style via Convert|Quotes|Quotation Style.

The last two buttons allow you to test the case conversion rules of your scheme. Adjust Case does a one-
time adjustment of the case of the selected text following the scheme’s rules in the same way as
Convert|Case|Adjust Case does in EditPad Pro and AceText. Auto Case automatically adjusts the case of
text after you’ve typed it in the same way as the Convert|Case|Auto Adjust Case menu item in EditPad Pro
and AceText. If all your elements and subschemes specify “don’t change case” then these two buttons are
disabled.

Automatic adjustment of quotes and case only happens when you move the cursor away from the line you
entered them on. This allows the adjustment to take whole lines and whole words into account so that it can
differentiate between opening quotes and leading apostrophes and can properly capitalize words.

14

7. Coloring Scheme

Select “Main Coloring Scheme” near the top of the tree view to edit the main part of your syntax coloring
scheme. You can specify a default color, spell check, quote conversion, and case adjustment rule for any text
that is not matched by any element in your scheme. These are explained later in this topic. The “include”
setting is explained in the help topic about subschemes.

You can use the Developer Notes box to enter any information that may be helpful when you or others
want to edit the scheme in the future. These notes are only displayed in the scheme editor. Comments for
people using the scheme should be entered with the general information on the scheme.

The main coloring scheme consists of one or more scheme elements. Use the Add Element and Delete
buttons to add a new scheme element or to remove the selected one. The Cut, Copy and Paste buttons on
the toolbar work on scheme elements (and also on whole subschemes).

Use the Move Up and Move Down buttons to move the active element up or down. The order of the
scheme elements is important. If the regular expressions of two or more elements match at the same position
in the file, the topmost element is be the one that is applied to the piece of text that starts at the regex match
position. An example: if your scheme has both a “reserved word” element which matches a limited set of
words, and an “identifier” element which matches any word, the “identifier” regex matches whatever the
“reserved word” regex matches. Therefore, the “reserved word” element must be positioned above the
“identifier” element so that “reserved word” takes precedence. Otherwise, all reserved words would be
colored just like identifiers.

If two elements could potentially find overlapping matches starting at different positions in the file, then their
order in the scheme is irrelevant. The leftmost match always takes precedence. If the same example scheme
also has a “variable” regex that matches a dollar sign immediately followed by any word, then it doesn’t
matter that the same word could also be matched by the “reserved word” or “identifier” elements. The match
of the “variable” regex would always be found first. Text matched by that regex is then no longer available to
be matched by any other regex. If reserved words aren’t permitted as variable names, then you need to adjust
the “variable” regex to not match reserved words.

Scheme Elements

Name: Short, descriptive name for your own reference when editing the scheme. Elements can have the
same name or even no name at all. But the scheme editor automatically assigns a generic name when pasting
an element with no name or a duplicate name to encourage you to enter a unique name.

Comments: Comments on this scheme element. If your scheme has similar elements you should enter some
comments to help understand the purpose of each element.

Regex: Regular expression that matches the text that this scheme element should apply its color and other
settings to.

Case insensitive: When ticked, the regex is applied without regarding any difference to uppercase and
lowercase letters.

15

Free-spacing: Turn this on to ignore spaces and line breaks in the regular expression, unless they’re part of a
character class or preceded by a backslash. You can use this to make complex regular expressions more
readable by using multiple lines with indentation. In this mode, # starts a comment unless it is in a character
class or preceded by a backslash.

Dot matches line breaks: In a regular expression, the dot . matches any character except line break
characters. If the dot should match everything, including line breaks, tick “dot matches line breaks”.

Color: The color that this scheme element applies to the text matched by its regular expression. You can only
select specific named colors. Try to select the one that most closely describes the part that this scheme
element highlights. The actual color (red-green-blue value) depends on the color palette selected by the user.
In EditPad the palette is part of the file type configuration. In AceText the palette is a global setting in the
Appearance Preferences. But AceText can use different palettes when printing or exporting collections and
when sending clips as HTML or RTF to another application. The scheme editor allows you to preview your
scheme with any palette available in EditPad Lite 8, EditPad Pro 8, and AceText 4. The drop-down list shows
each named color in the actual colors of the preview palette. This makes it easier to select the correct named
color. But it does not mean that the actual color is saved into the scheme.

Spell check: Choose whether the matched text should be included in a spell check operation. This applies to
manual spell checks invoked with the Extra|Spell Check menu item. It also applies to live spelling (wavy red
underlines) in EditPad Pro and AceText. Turn on “spell check” in the scheme editor if the regex most likely
matches natural language. For anything else, turn it off. EditPad’s and AceText’s schemes for programming
languages have this turned on for comments and strings, but not for anything else.

Color whitespace: Choose whether the background color, underline, and strikeout should be applied to any
whitespace matched by the regex. You’ll usually want to turn this on so highlighting and underlining runs
uninterrupted. Note that this setting is relevant even if your chosen named color does not have a background
color, underline, or strikeout. The user of your scheme may use it with a different palette that does give the
named color a background, underline, or strikeout.

Color visualized space: Choose whether the text and background colors, underline, and strikeout should be
applied to visualized whitespace. Turn this on if whitespace is an effective part of what is being colored.
EditPad’s and AceText’s schemes turn this on for strings as the whitespace really is a part of the string. But
they have it turned off for comments (and almost everything else) as there is no need to emphasize
whitespace in comments. Then the palette’s color for visualized whitespace is used. This is a muted color in
the predefined palettes. If you turn this off but turn on “color whitespace”, then the background color,
underline, and strikeout are still applied to visualized whitespace.

The options for coloring whitespace also apply to control characters other than tabs and line breaks that
your regex may match. Turning on either option applies the background color, underline, and strikeout to
control characters. Turning on “color visualized spaces” also applies the text color to control characters.
Otherwise, the palette’s color for control characters is used.

Color line breaks: Choose whether the color should be applied to visualized line breaks. Turn this on if line
breaks are an effective part of what is being colored. EditPad’s and AceText’s schemes turn this on for multi-
line strings as the line breaks really are a part of the string. But they have it turned off for comments (and
almost everything else) as there is no need to emphasize line breaks in comments. Then the palette’s color for
visualized whitespace is used for line breaks. This is a muted color in the predefined palettes.

Until right margin: This option affects scheme elements that match text at the end of a line. The effect is
only visible if the palette applies a background color or underline style (other than “font”) to the element’s

16

named color. Turning this on makes the background color or underline run until the right hand margin of the
editor control, instead of ending where the text ends. This can be useful to make section headings stand out
and act as a divider. The “section” scheme element in INI.jgcscs uses this option to highlight the entire line
that starts a [section] in .ini files.

Apply detail: Select (none) to apply all the settings of the scheme element. Select “RGB Preview” if you
want the scheme element’s color to be based on the regular expression match. The named color you selected
above is then used as a fallback if the preview failed or if the user has disabled it. RBG preview can be
disabled in the file type configuration in EditPad. It cannot be disabled in the scheme editor or in AceText.
All of the other settings in the scheme element are applied normally.

If you added one or more “detail” subschemes to your syntax coloring scheme, then you can select them in
the “apply detail” drop-down list. Doing so overrides all of the element’s settings except the brackets and
“toggle to”. The help topic about subschemes explains this in more detail.

Toggle to: After applying this element’s color or its detail subscheme, continue applying syntax coloring after
this element’s regex match using another subscheme. The help topic about subschemes explains this in more
detail.

Next subscheme highlight: If “toggle to” is set to a subscheme that uses a highlight color then this option
determines whether the subscheme’s highlight color is also applied to this element. PHP.jgcscs, for example,
uses this to apply the “code highlight” color that is used by the “PHP” subscheme also to the “PHP” element
in the main coloring scheme that matches the opening <?php tag.

Action: Action to be taken when the user double-clicks on a piece of text this scheme element was applied
to. The “tool errors” schemes included with EditPad use actions to make file names in error messages open
the file at the correct location when double-clicked. It is customary, but not necessary, to select the “local
link” or “internet link” colors for scheme elements that use actions.

 Open in editor: open the file specified in the first parameter in the application’s built-in editor.

 Open in editor at line: like “open in editor”, except that you can also specify a second parameter with
the line number at which the file should be opened.

 Open in editor at line:col: like “open in editor”, except that you can also specify a second parameter
with the line number and column number delimited by a colon at which the file should be opened.

 Execute file: open the file specified in the first parameter with the default application for opening
that kind of file. If the file is an executable program, you can specify command line parameters in the
second parameter for the action.

 Start email: start a blank file and shows the email panel in EditPad Pro, using the email address
specified in the first parameter as the To: address for the new mail.

 Open in browser: open the file or URL specified in the first parameter in the default browser.

Action parameters: If you select an action, you will get one or two extra boxes to provide parameters for
that action. If you leave the first parameter blank, the entire text matched by the scheme element’s regex is
used as the first parameter. You can use part of the regex match by typing in a backreference such as \1 as
the parameter. See the regular expression tutorial in EditPad’s or AceText’s help file for more information on
backreferences. The entire replacement string syntax, including backreferences and conditionals, is supported.
You can also enter literal text and path placeholders. The path placeholders are expanded using the file name
of the file being colored using your syntax coloring scheme. Path placeholders are expanded after the
backreferences have been expanded.

17

Opening bracket: If this scheme element matches an opening bracket (and nothing else), select 0 (zero) in
the drop-down list to specify that the whole regex match is an opening bracket. If the scheme element
matches an opening bracket along with other text, add a capturing group to the regular expression that
captures the opening bracket. Then select the group’s number or name in the “opening bracket” drop-down
list.

Closing bracket: Same as “opening bracket” but for elements that match a closing bracket. If the scheme
element matches both an opening bracket and the closing bracket it pairs with, put a capturing group around
each, and specify both “opening bracket” and “closing bracket”. For example, the “string” element in
Delphi.jgcscs specifies both “bracket open” and “bracket close” to pair the quotes that enclose a string.

If the capturing group referenced by “opening bracket” or “closing bracket” does not participate in the match
or finds an empty match, then that bracket is treated as missing. Many of the schemes provided with EditPad
define the opening and closing quotes of strings as brackets. They also make the closing quote optional so the
scheme reliably handles unterminated strings. When an unterminated string is matched, its opening quote is
treated as an unmatched bracket.

Bracket pairing: If you specified an opening bracket or a closing bracket but not both then you need to
enter the same text in the “bracket pairing” box for the scheme element with the opening bracket and the one
with the closing bracket. This allows the brackets to be paired. If your scheme has multiple pairs of brackets,
then different bracket pairs need different text in the “bracket pairing” box. If one scheme element specifies
both the opening and closing bracket, then you can leave “bracket pairing” empty as the two brackets are
then paired automatically. In CPP.jgcscs, for example, has scheme elements that pair up braces, square
brackets, and parentheses.

The text matched by the regular expression does not have to be the same for each opening or closing bracket.
The “pairing” setting determines whether brackets are a pair or not. In Delphi.jgcscs, for example, the
“Begin” scheme element matches one of the words “begin”, “case”, “record”, “try”, etc. It specifies 0 (the
whole regex match) for “opening bracket”. Pairing is set to “beginend”. The “End” element matches just that
word, specifying 0 for “closing bracket” and “beginend” for pairing. This causes the scheme to treat “begin”,
“case”, “record”, “try”, etc. as opening brackets that can all be paired with “end”.

You can use backreferences to capturing groups in the regular expression such as \1 for bracket pairing. This
allows you to use (part of) the regex match to determine what the bracket should be paired with. VB.jgcscs
uses the “Block” element to define one of a list of keywords as an opening bracket. It has “bracket pairing”
set to \0 which makes the whole regex match (the keyword) the pairing text. The “End Block” element
defines End followed by one of the same list of keywords as a closing bracket. The first capturing group in its
regex captures the keyword. It has “bracket pairing” set to \1 so that just the keyword is used for pairing.
Together this allows the matches of the “Block” element to be paired with those of the “End Block” element,
but only when they matched the same keyword. The same technique works when the brackets could be
anything. XML.jgcscs matches entire XML tags with the “Opening tag” and “Closing tag” elements. The
entire tags are defined as brackets. Both capture the name of the tag into the first backreference which is then
used for bracket pairing.

Bracket pairing is case sensitive. If you want to pair up brackets case insensitively, you need to use
backreferences that convert case. For example, \L1 inserts the text matched by the first capturing group
converted to lowercase. The HTML.jgcscs scheme matches opening and closing tags much like the XML
scheme does. But it uses \L1 to pair the tags case insensitively.

Within 1 subscheme: Turn this on if the bracket should only be paired with other brackets within the same
block of text highlighted by the subscheme that contains the element defining the bracket. In other words,

18

the scheme stops looking for a matching bracket when a scheme element changes to another subscheme.
Turn this off to find matching brackets throughout the file.

Bracket nesting: This setting is relevant if your scheme defines more than one pair of brackets. If you leave
the “nesting” setting blank for a pair of brackets, then that pair of brackets cannot be nested in itself. For
example, when matching parentheses without nesting, the inner pair in (()) is matched, while the outer
brackets are highlighted as unmatched brackets. When “nesting” is blank, brackets from different pairs are
ignored. For example, when matching parentheses and square brackets without nesting, the inner pair of
parentheses in (([)]) is still matched, while the outer pair is not. The pair of square brackets is also matched.
Essentially, bracket pairs without nesting cannot be nested within themselves, and ignore all brackets that
belong to other pairs.

If you specify something for “nesting”, then you must always specify the same “nesting” for each “pairing”.
You can specify different nestings for different pairings. If “nesting” is specified for a pair, then bracket
matching check whether that pair is correctly nested within itself. For example, when matching parentheses
with nesting, both pairs in (()) are matched. Bracket pairs with a different “nesting” setting ignore each other.
For example, when matching parentheses and square brackets using different “nesting” for the parentheses
and for the brackets, then all 3 pairs in (([)]) are considered to be correctly matched brackets.

If you require different pairs of brackets to be nested correctly, then you need to specify the same “nesting”
for all those pairs. For example, when matching parentheses and square brackets using the same “nesting” for
all, then only the inner pair of square brackets in (([)[]]) is highlitghed as correctly matched brackets. The
other three pairs are highlighted as incorrectly matched brackets because the brackets between them are not
nested correctly.

The PHP.jgcscs scheme is an example of a scheme that uses two sets of bracket nesting. The scheme
elements that match HTML tags all have “nesting” set to “html”. The scheme elements that match PHP code
have "nesting" set to "php". This allows HTML tags to be paired and nested regardless of any PHP code in
between and allows braces in PHP code to be paired and nested regardless of any HTML tags in between.
The same scheme also has elements that define < and > in HTML tags as brackets. These elements do not
specify anything for "nesting" as < and > cannot be nested.

You can use backreferences to specify bracket nesting as you can do for bracket pairing. But you have to
make sure that after backreferences are substituted, same “nesting” text is always used for the same “pairing”
text. If you don’t, only the first “nesting” choice for each “pairing” is actually used.

Generate bracket: If a scheme element specifies only one of “opening” or “closing bracket”, or both are
specified but one refers to a group that is optional, then you can specify the text for the other bracket in the
“generate” box. For example, specify) for a scheme element that matches (as an opening bracket. This text is
inserted by Edit|Insert Matching Bracket in EditPad Pro when a (without a matching) is highlighted.

You can use backreferences to have the generated bracket adapt it to the bracket it needs to match. For
example, the XML.jgcscs scheme has “Opening tag” and “Closing tag” elements that capture the tag’s name
in the first (and only) group. The “opening tag” elements use </\1> to generate the closing tag, and the
“closing tag” element uses <\1> to generate the opening tag.

Auto: Tick the “Auto” checkbox if you want the Edit|Auto Match Brackets option in EditPad to
automatically generate the closing bracket when you type the opening bracket. You should only turn this off
if the closing bracket could be generated prematurely and cause it or other text to be interpreted incorrectly.
The XML and HTML schemes, for example, do not automatically generate a > when you start typing a tag as
that would interfere with automatically generating a closing tag after typing an opening tag.

19

Only after line break: If you tick “Auto”, you can tick “Only after line break” to delay generating the
matching bracket until a line break is entered by the user or automatically generated by the Auto Break
option. This is necessary if the bracket could be matched prematurely. Delphi.jgcscs for example has a
“Begin” element that automatically generates the “end” keyword to match the “begin” keyword. But “end”
should not be generated immediately when the user types “begin” as the user may intend to continue typing a
longer word which should not be paired with “end”. By turning on “only after line break” the “end” keyword
is only generated when the user presses Enter after typing “begin” which indicates “begin” is indeed intended
to be the start of a block to be paired with “end”.

Break and indent: This choice affects how the Auto Break and Auto Indent options in EditPad (and the
preview in the scheme editor) automatically add line breaks before and after text matched by this element and
how they indent the lines created by automatic or manual line breaks before and after this element.

The “opening brace” and “closing brace” are intended for elements that match the start or end of a code
block, for which many programming languages use curly braces. In the scheme editor you can select a
predefined block indentation styles in the drop-down menu under the Auto Break button on the preview
toolbar to test this. In EditPad Pro the user can configure exactly how braces should be indented in the file
type configuration. People can have strong opinions about this. So use the “opening brace” and “closing
brace” options whenever possible, even if your language does not actually use braces. Delphi.jgcscs, for
example, uses these options for the “begin” and “end” keywords.

The various “markup tag” options are indented for HTML and XML tags. If a scheme element matches tags
entirely, select “opening markup tag” for <tag>, “closing markup tag” for </tag> and “empty markup tag”
for <tag/>. If a scheme element matches < and > separately, select “start of opening or empty markup tag”
for <, “start of closing markup tag” for </, “end of opening or closing markup tag” for > and “end of empty
markup tag” for />. If you have a scheme element that matches tags entirely and uses a detail subscheme then
you need to make the detail subscheme match the angle brackets separately and set the “break and indent”
option. Because the scheme element that matched the tag uses a detail subscheme, its “break and indent”
setting is ignored. It’s important that the “break and indent” rule corresponds with the role of the characters
rather than the actual characters. HTML ends empty tags with > rather than />. To handle that HTML.jgcscs
has separate subschemes for opening tags and empty tags so that > can be set as “end of opening or closing
markup tag” when inside an opening tag and as “end of empty markup tag” when inside a tag that is
supposed to be empty. The difference matters because you’d expect automatic indentation to increase
indentation after an opening tag but not after an empty tag.

The user can choose whether automatic line breaks are inserted before and after tags that are part of mixed
content inside another tag. The scheme editor has an item in the drop-down menu under the Auto Break
button on the preview toolbar. EditPad Pro has this option on the Brackets page in the file type
configuration.

If you select “custom rules” then you get two pairs of settings to specify exactly how line breaks and
indentation should be added before and after this element’s matches. Then the user won’t be able to
customize auto breaking and indentation in EditPad, other than to completely turn off Auto Break and/or
Auto Indent. Schemes can use any mixture of braces, markup tags, and custom rules. Automatic line breaks
can never be inserted into the middle of an element’s match. Indentation of the next line can be aligned to the
middle of a match if the element defines an opening or closing bracket.

 Do not break or indent: Do not automatically insert a line break. Do not change the indentation of
manual line breaks.

20

 Automatically break and indent: If Auto Break is on then automatically insert a line break and adjust
the indentation of the new line. If Auto Break is off and Auto Indent is on, apply indentation rule to
adjacent manual line breaks.

 Indent if at the start of a line: If Auto Indent is on and the user enters a line break and then
immediately enters text matched by this element, adjust the indentation of that manual line break.

 Indent adjacent break: If Auto Indent is on then adjust the indentation of a new line created by
manually entering a line break immediately after text matched by this element.

 Indent non-adjacent break: If Auto Indent is on then adjust the indentation of a new line created by
manually entering a line break on the same line after text matched by this element if this element is
the last one matched on that line that defines any breaking or indentation rules.

 Indent on the same line by one step: If Auto Break is on then insert a tab or spaces to move the
cursor one indentation step further than the first non-whitespace character of the line. If the cursor is
already at or beyond that column, then do nothing. If Auto Indent is on then add one step of
indentation to a new line created by manually entering a line break on the same line after text
matched by this element if this element is the last one matched on that line that defines any breaking
or indentation rules.

 Keep indentation level: Indent the new line by the same amount as the previous non-blank line.

 Indent by one step: Indent the new line one step more than the previous non-blank line.

 Outdent by one step: Indent the new line one step less than the previous non-blank line.

 Outdent to previous level: Indent the new line by the same amount as the closest line above the
previous non-blank line that is indented less than that previous non-blank line. Keep the indentation
level if there is no such line.

 Same level as paired opening bracket: If this element’s “closing bracket” setting defines a closing
bracket at the start or end of the element’s match (depending on whether the line break is inserted
before or after the match) and that closing bracket can be paired with an opening bracket on a
preceding line, then indent the new line by the same amount as the line containing the opening
bracket. Keep the indentation level if there is no such line.

 Indent one step from paired bracket: As the previous rule. But indent the new line one step more
than the line containing the opening bracket.

 Outdent one step from paired bracket: As the previous rule. But indent the new line one step less
than the line containing the opening bracket.

 Outdent one level from paired bracket: Indent the new line by the same amount as the closest line
above the line containing the opening bracket that is indented less than that previous non-blank line.
Keep the indentation level if there is no such line.

 Align with start of match: Indent the new line by the exact amount needed to make text entered on
the new line start at the same column as the text matched by this element.

 Align with end of match: Indent the new line by the exact amount needed to make text entered on
the new line start one column after the column on which the text matched by this element ends.

 Align with start of opening bracket: Indent the new line by the exact amount needed to make text
entered on the new line start at the same column as the text matched by this element’s opening
bracket. Align with the start of the match if there is no opening bracket.

 Align with end of opening bracket: Indent the new line by the exact amount needed to make text
entered on the new line start one column after the column on which the text matched by this
element’s opening bracket ends. Align with the end of the match if there is no opening bracket.

 Align with start of closing bracket: Indent the new line by the exact amount needed to make text
entered on the new line start at the same column as the text matched by this element’s closing
bracket. Align with the start of the match if there is no closing bracket.

 Align with end of closing bracket: Indent the new line by the exact amount needed to make text
entered on the new line start one column after the column on which the text matched by this
element’s closing bracket ends. Align with the end of the match if there is no closing bracket.

21

In EditPad, the Tabbing page in the file type configuration allows the user to configure the size of an
indentation step. There is also an option to detect the indentation size of lines around the line that needs to
be indented. The preview in the scheme editor always detects indentation size. If a file has no indentation yet
then it uses two spaces for indentation.

22

8. Subschemes

If your scheme is quite complex, you may need to use subschemes. Like the main part of the scheme, a
subscheme is a series of scheme elements.

To create a new subscheme, click the New SubScheme button on the toolbar. To delete a subscheme, select
it in the tree and click the Delete button. This button changes its appearance when a subscheme is selected
to alert you that you will be deleting an entire subscheme rather than just one scheme element.

You can use the Cut, Copy, and Paste buttons to move or copy entire subschemes. When pasting a
subscheme while another subscheme is selected, you’ll get a drop-down menu that lets you choose whether
the pasted subscheme should be inserted as a new subscheme after the selected one, or whether the pasted
subscheme should replace the selected one.

You can use the Move Up and Move Down buttons to change the order of subschemes. The order is only
relevant for "include" subschemes. The final section in this help topic explains that. For all other types of
subschemes can be put in whatever order makes it easier for you to keep track of all the subschemes. All
subschemes can reference all other subschemes.

Each subscheme must have a unique name. Scheme elements reference subschemes by name. Changing the
name of a subscheme automatically updates all elements that reference it. Deleting a subscheme does not
remove any references to it. So you can cut a subscheme and paste it back without breaking anything. You
can make a scheme element reference a subscheme that does not yet exist by typing in the subscheme’s name
instead of selecting it from the element’s “apply detail” or “toggle to” drop-down list. Pasting in an element
form another syntax coloring scheme does not alter or remove subscheme references. So if you want to copy
and paste multiple subschemes that each have elements referencing other subschemes, you do not need to
worry about the order in which you copy and paste the subschemes. All references will be preserved. It is
only when you click the Preview button that references must be resolved. (But if they aren’t even doing that
doesn’t break any references to missing subschemes.)

Each subscheme is one of five subscheme types. Each type is explained in detail in separate sections below.
Subschemes of type “include” have no settings other than their name and their type. All the other subscheme
types have the following additional settings.

Subschemes have the same default color, spell check, quote conversion, and case adjustment rules for any
text that is not matched by any element in the subscheme. These are described in the help topic for the main
part of the syntax coloring scheme, which has these too.

Subschemes also have a highlight color. This color is applied to all text that is processed by the subscheme,
regardless of whether that text is matched by any of the subscheme's elements. The color of the scheme
elements then applied on top of this highlight. When the element color is overlaid on the highlight color, the
editor checks which parts of the element color are set to “default” in the palette. For those parts, the highlight
color is preserved. For other parts, the element color replaces the highlight color. The predefined palettes
specify RGB values for the background of the various colors with “highlight” in their name, but not for
colors that are named for programming language syntax. So a subscheme can use a color with “highlight” in
its name as its highlight color and then use the programming syntax colors for its scheme elements to show
programming code with a different highlight. Scala.jgcscs uses this effectively. The subschemes for XML use
“markup highlight” as their highlight color and the various colors for markup tags for their elements. The
“Scala in XML” subscheme uses “code highlight” as its highlight color while otherwise using pretty much the
same elements as the main part of the scheme. This makes it easy to distinguish nested sections of Scala code.

23

But there is no restriction on which named color you can select as the highlight color for your subscheme.
You could set to “Strong”, for example, to make all the text processed by the subscheme bold.

Subschemes can override the Block|Comment setting. Leave this blank to use the setting from the general
section of the scheme. PHP.jgcscs, for example, has its general Block|Comment set to HTML comments. Its
subschemes that highlight PHP code change this to PHP comments for their parts of the file.

Detail

On its own, a scheme element can apply only one color to its regex matches. To apply multiple colors to one
regex match, you can add a subscheme of type “detail”. You can then select that subscheme in the element’s
“apply detail” drop-down list.

Doing so overrides all of the element’s settings except the brackets and “toggle to”. Set the subscheme’s
default color to the element’s color. Then add elements to the subscheme that match the parts that need
different colors.

The regular expressions of the scheme elements in a detail subscheme only see the part of the text matched
by the scheme element that applies the detail subscheme. This means \A, ^, \z, and $ match at the start and
the end of the element being detailed. Lookaround cannot see beyond the element being detailed.

Detail subschemes are less efficient than toggle subschemes. Much less so when the subscheme can span
multiple lines. When an element applies a detail subscheme the text matched by the element’s regex needs to
be matched again by the subscheme’s regexes. When an edit is made in text colored by a detail subscheme,
the entire range colored by that detail subscheme needs to be parsed again. It has to because after the edit
there is no guarantee that the regex of the element that applies the detail subscheme would still find the same
match. So use detail subschemes only when you can’t get the same result with a toggle subscheme.

One situation where a detail subscheme seems an obvious solution is coloring strings with interpolated
variables. An element in the main scheme matches the whole string. A detail subscheme then highlights the
variables. But this is not efficient. If the string supports escape characters it’s even more complicated than
using a “toggle” subscheme as explained in the next section.

Perl has very flexible ways of quoting strings. That makes it quite challenging to apply proper syntax coloring.
Perl.jgcscs uses the toggle method for interpolated strings as much as possible. The “Double-quoted string”
element, for example, just matches the opening double quote and then hands off to a “toggle” subscheme.
But the “Interpolated double-slashed string” element is forced to use a “detail” subscheme. This element
allows any non-word non-blank character as the string’s opening delimiter. So it needs to use a backreference
to match the same character as the closing delimiter. This means one regex has to match the entire string
including both delimiters. A detail subscheme then picks out interpolated variables.

Another thing that can only be accomplished with detail subschemes to have opening and closing brackets
that have multiple colors. A bracket must be defined by the match of a single scheme element (or a
capturing group in a single scheme element). So then you need one element to match the whole bracket and
apply a detail subscheme to give the bracket multiple colors. XML.jgcscs and HTML.jgcscs have “Opening
tag” and “Closing tag” elements that match an entire XML and HTML tag and specify the entire tag as an
opening or closing bracket. This allows bracket matching to pair up and highlight entire tags. A detail
subscheme is then necessary to give attributes and attribute values different colors.

24

An element inside a “detail” subscheme can also use the “apply detail” to apply a further level of detail. There
is no restriction on how deep “detail” subschemes can be nested inside each other.

An element’s “apply detail” setting makes the subscheme override all the element’s setting, except the
brackets. This allows for two levels of brackets. HTML.jgcscs and XML.jgcscs make use of this. The
subschemes used by the “Opening tag” and “Closing tag” elements separately match the < and > that start
and end the tag and specify those as opening and closing brackets too. This gives the scheme two levels of
brackets. XML and HTML tags are matched at the base level. < and > are matched at the second level.

Only two levels of brackets are supported. The second level is entered when an element defines a bracket and
uses a detail subscheme. Any brackets defined by elements in the detail subscheme are then at the second
level. This ensures that brackets added by the element can overlap with brackets added by the detail
subscheme. It does not matter whether they actually overlap or not. The second level is entered regardless. It
is exited when the detail subscheme finishes.

If the second level was already entered and another element is encountered that defines a bracket and uses
another detail subscheme, then any brackets defined by the other detail subscheme are added at the second
level if they occur in the text after any previous brackets at the second level. If they overlap or occur before
any other brackets then they are ignored.

If an element does not define any brackets and uses a detail subscheme, then there is no possibility of
overlap. So the second level is not entered. If the detail subscheme adds brackets, they are added at the base
level.

An important restriction is that the two levels of brackets are segregated for bracket pairing and nesting. If
brackets need to be paired, you need to make sure they are added at the same level. You cannot force
brackets at the second level to be correctly nested inside brackets added at the first level. When looking for a
matching bracket, brackets at the other level are totally ignored.

Toggle

With “toggle” subschemes you can switch your syntax coloring scheme between different contexts in the file.
The previous section already mentioned that strings with variable interpolation, for example, are best handled
with a “toggle” subscheme. In Perl.jgcscs the “Double-quoted string” element simply matches a double quote
that starts an interpolated string. This element has “toggle to” set to the “Interpolated string” subscheme.
This switches the syntax coloring scheme to the context of being inside an interpolated string. This
subscheme has three elements. The element for the closing quote simply matches another double quote
character. It has "toggle to" set to "Main coloring scheme". This switches the context back to regular Perl
code.

The two other elements in the “Interpolated string” subscheme are included via the “Interpolation”
subscheme. The “escape character” element matches any character that is escaped with a backslash, including
an escaped double quote. By using a “toggle” subscheme, you can match a string that allows quotes to be
escaped with three trivial regexes (opening quote, escaped character, and closing quote). Doing this with one
regex is more complicated. Finally, the “variable” element colors the interpolated variables.

If the closing quote is missing, then the subscheme has no elements that toggle back to the main scheme. The
subscheme then runs until the end of the file. In case of our Perl scheme, this is perfectly acceptable. In Perl
double-quoted strings can span across lines.

25

When an edit is made to text colored by a “toggle” subscheme, the parser restarts at the last change of color
before the start of the line that the edit was on. There is no need to back up further to where the subscheme
was toggled to. The parser can see the context it is in from the existing colors.

Toggle subschemes can contain elements that toggle to other subschemes. They can have multiple elements
that toggle to different subschemes. A “toggle” subscheme can even have an element that toggles to itself.
This is not the same as an element that does not toggle at all. Only make a subscheme toggle to itself if you
need the recursion, as explained below.

There is a special “toggle to” choice labeled “toggle back to previous subscheme“. This makes the element
toggle back to whichever subscheme that toggled to the present subscheme. This is very useful if you have
elements in multiple subschemes all that toggle to the same subscheme. The subscheme toggled to can then
toggle back to any of those multiple subschemes simply by having one element set to “toggle back to
previous subscheme”. Delphi.jgcscs uses this. The main part of the scheme, the “Property” subscheme and
the “Asm” subscheme all include the “Common” subscheme. This means that the main part and the 2
subschemes all include the “(* comment” element which toggles to the “(*Comment*)” subscheme. That
subscheme just has one element set to toggle back to the previous subscheme. This way Property and Asm
blocks continue correctly after the comment.

This toggling and toggling back mechanism can be nested arbitrarily deep. Each time a subscheme toggles to
another that toggle is added to a stack. When a subscheme wants to toggle back to the previous subscheme,
the most recent toggle is popped from the stack. This is why an element toggling to its own subscheme is
different to one that doesn’t toggle at all. When a subscheme toggles to itself, that toggle is added to the stack
too. This makes toggle subschemes a very efficient way to match recursive constructs.

In Scala, multi-line comments can be nested. Scala.jgcscs handles this with the “Multi-line comment” element
in the main part of the scheme which toggles to the “Comment” subscheme. This subscheme has two
elements. The “Nested comment” element matches another /* and toggles to the “Comment” subscheme.
The “Closing */” element toggles back to the previous subscheme. This could be the main part of the
scheme or the “Comment” subscheme itself. Three scheme elements with trivial regexes is all it takes to
perfectly handle Scala’s comments nested arbitrarily deep. Though you could handle this with a recursive
regular expression, doing so would require a complicated regex that wouldn’t perform nearly as well as the
subscheme with two simple regexes.

Toggle Until End of Line

Having a “toggle” subscheme automatically disqualifies a syntax coloring scheme from being a “fast” scheme.
As explained in the previous section, there’s nothing to guarantee that a toggle subscheme actually toggles
back at a certain point or at all.

The “toggle until end of line” subscheme type resolves this. These subschemes have an implied regex that
matches a line break. When this regex matches, the subscheme toggles to the main part of the scheme. It
always toggles to the main part of the scheme. It does not toggle back to whichever subscheme that toggled
to the present subscheme.

This subscheme type is specifically intended to allow the toggle mechanism to be used in “fast” syntax
coloring schemes. By always toggling to the main part of the syntax coloring scheme, the parser can know
that it can begin with the main part of the scheme at the start of any line without having to take any preceding

26

lines into account. The requirement for “fast” schemes that none of the elements can have regexes that can
match any line breaks does remain.

If a “toggle until end of line” subscheme contains a regex that matches line breaks, then the subscheme can
span across lines. This is not a problem. It then simply toggles back to the main scheme when it encounters a
line break that is not part of an element’s match that started before the line break. The implied regex takes
precedence over all elements. But it does not force elements to stop at the first line break.

Toggle within Detail

This is another variation on the “toggle” subscheme type. A “detail” subscheme cannot have elements that
toggle to a “toggle” or “toggle until end of line” subscheme. But “detail” subschemes can have elements that
toggle to “toggle within detail” subschemes.

The only real difference is that a “toggle within detail” subscheme automatically stops where the “detail”
subscheme was to stop. A “toggle within detail” subscheme can use “toggle back to previous subscheme” to
go back to the “detail” subscheme. But it doesn’t need to. The run of the “detail” subscheme and anything it
toggles to always ends where it should. The “toggle within detail” subscheme also inherits the positions where
\A and \z matched in the “detail” subscheme.

A “toggle within detail” subscheme can toggle to other "toggle within detail" subschemes. These can toggle
back and forth without restriction. They can also have elements that apply other “detail” subschemes.

Include

An “include” subscheme is never used directly. It is simply a reusable collection of scheme elements.
Subschemes of all other types have an “include” box among the subscheme’s settings. This box lists all the
“include” subschemes that you added to your syntax coloring scheme. Ticking any subschemes in the
“include” box adds their elements to the present subscheme.

If multiple subschemes in your syntax coloring scheme need to use the exact same scheme elements, consider
putting those elements in an "include" subscheme. Then have those multiple subschemes include that
scheme. This makes your scheme easier to maintain when some of the shared elements need to be changed.

There is no performance benefit to using “include” subschemes. Internally, the scheme elements are
duplicated into the subschemes that include the “include” subscheme.

The first section in the help topic about the main part of the scheme explained that the order of scheme
elements in a subscheme matters when those elements can match the same text. Elements from included
subschemes are added after the elements of the subscheme that includes them. So the elements in a
subscheme that is not of type “include” always take precedence over elements from included subschemes. It
does not matter whether the included subscheme is placed above or below the subscheme that includes it.

But if a subscheme includes mutiple subschemes that have elements that may match the same text, then the
order of those included subschemes matters. Elements from an included subscheme that is higher in the list
take precedence over elements from an included subscheme that is lower in the list.

27

The “toggle to” setting of a scheme element is restricted depending on the type of subscheme that uses the
element. A “toggle within detail” subscheme can only be toggled to from elements in a “detail” or a “toggle
within detail” subscheme. A “toggle” or “toggle until end of line subscheme can only be toggled to from
elements in those types of subschemes or from the main scheme. If you need to color the same syntax inside
and outside “detail” subschemes, then you will need two sets of subschemes with two sets of toggling
elements. Only elements that don’t toggle can be inside a shared “include” subscheme. If an element in an
“include” subscheme doesn’t follow the rules of the subscheme that includes it, then clicking the Preview
button selects that element inside the “include” subscheme, because that’s the only place it is visible in the
scheme editor. But the error message will indicate the name of the subscheme that actually includes the
element by including its subscheme.

PHP.jgcscs is an example of this restriction leading to some duplication of elements. It has two sets of
subschemes for highlighting PHP code. One set is toggled to from the main part of the scheme. The other
set is toggled to from the “detail” subschemes that highlight HTML tags. There is no other way to handle this
if bracket matching needs to be able to match up entire HTML tags and to also highlight PHP code inside
HTML tags. If bracket matching did not need to match up entire HTML tags, then HTML tags could be
colored with a “toggle” subscheme which could then toggle to the same PHP subscheme for nested PHP
code as the main scheme.

28

9. Regular Expressions

Regular expressions are used for searching through (usually textual) data. They allow you to search for pieces
of text that match a certain form, instead of searching for a piece of text identical to the one you supply. For
example, the regular expression [0-9]+ allows you to search through a file for any integer number.

It takes some time to get used to the syntax used by regular expressions. In our example, we used square
brackets to create the character set [0-9]. This character set matches any character that is a digit. The +
means that the character set must be matched as many times as possible, and at least once. EditPad’s help file
and printable manual contain a detailed tutorial to regular expressions. The tutorial clearly explains the entire
regular expression syntax. It explains the exact regex flavor used by EditPad and the scheme editor. AceText
has the same documentation in its help file but not in its printable manual.

Regular expressions are not only useful for building your own syntax coloring schemes. You can also use
them for powerful search and replace operations in EditPad. Make sure the Regex button is down and you
can unleash all their power upon your files. In AceText you can search and replace with regular expressions if
you click the Search Options button and then tick the Regular Expression checkbox. If you’re a developer,
your programming language very likely has its own regex library. It may even support regexes as a language
feature.

If you want more assistance with creating and editing regular expressions, take a look at our product
RegexBuddy at https://www.regexbuddy.com/. You can launch RegexBuddy right from within the scheme
editor by clicking the RegexBuddy button on the main toolbar. This launches RegexBuddy and transfers the
regular expression of the active scheme element and the text you have in the preview editor to RegexBuddy.
This allows you to quickly test and debug this regex in isolation in RegexBuddy. After fixing your regex in
RegexBuddy you can click the Send button in RegexBuddy to transfer your regex back to the scheme editor.
EditPad’s Search panel and AceText’s Search toolbar have a similar button that allows you to prepare a
regular expression for EditPad or AceText just as easily.

RegexBuddy can accurately emulate the regular expression flavors of a wide variety of applications and
programming languages. It has specific support for the regex flavor used by the syntax coloring system. You
can select EditPad 8 or AceText 4 as your application in RegexBuddy. In RegexBuddy’s documentation, this
regex flavor is known as “JGsoft V2”.

29

10. Working with Named Colors

EditPad’s and AceText’s syntax coloring can be configured at two levels. The syntax coloring scheme, which
you create in the syntax coloring scheme editor, you determine which parts of the file are colored as
keywords, comments, strings, etc. You’ll select named colors in the scheme editor, rather than actual red-
green-blue colors.

The color palette assigns actual red-green-blue colors to the named colors. In the scheme editor, you can test
with different palettes in the preview area. In EditPad, you can select a palette as part of the file type
configuration. You can have a different palette fore ach file for each file type. In AceText, all clips are
displayed using the palette you select it in the Appearance Preferences. But you can select another palette in
AceText when printing or exporting a collection. You can configure AceText to use a different palette for
each target application when sending clips as HTML or RTF.

The main reason for these two levels is that color preferences can be highly personal and depend on the
circumstances, such as a dark palette for display and black on white for printing. But creating or even
customizing syntax coloring schemes can be quite complicated. By separating color choice from syntax
definition, anybody can easily create their own color palettes and use them with any type of file.

For this system to work well, it’s important that your syntax coloring scheme uses the named colors as close
to their intended purpose as possible. Do not select a particular named color for a scheme element just
because it happens to be red, green, or blue in the default color palette. By using the appropriate named
colors, people can create one color palette that makes all their files, including the one colored by your
scheme, look nice and consistent.

If you think there aren’t enough named colors, then you’re probably trying to make your scheme way too
detailed. Most of the schemes included with EditPad and AceText only use a subset of the available named
colors. Remember that the purpose of syntax coloring is to make the text easier to navigate by the eye.
Making certain things like keywords stand out helps to visualize the structure of the text. Giving everything a
different color makes nothing stand out. It can even make the text harder to read than if no syntax coloring
was applied at all. It's perfectly fine if non-structural parts of the file all have the same color. Most of the
programming language schemes included with EditPad do not highlight any identifiers. Types, functions,
variables, and constants are all highlighted as plain text. Though there are named colors available for all of
these, using them all would not make the file easier to read.

Some of the predefined palettes even assign the exact same colors to multiple named colors. The JGsoft
Classic and the Embarcadero palettes emulate older versions of EditPad and the Delphi/C++Builder IDE
that support far fewer colors than the latest EditPad or AceText. These palettes may use the same colors for
elements that your scheme tries to differentiate. Again, that’s perfectly fine. People who choose to use those
palettes are likely used to not seeing too many different colors in their text editor or IDE and may find the
new default palette in EditPad or AceText makes your scheme far too “busy”.

Your scheme should not require a specific color palette. It should work well with the palettes that are
included with EditPad and AceText. It’s not a problem if some elements get the same colors with some
palettes as long as the more structural elements of the syntax stand out. Most of the programming language
schemes included with EditPad and AceText have separate elements for integer and floating point numbers
that use the corresponding named colors. But most of the palettes included with EditPad and AceText assign
the exact same RGB values to these named colors.

30

One good reason to create a custom palette is to emulate the colors of an application that is commonly used
to edit your type of file. But that palette should work as well as possible with the syntax coloring schemes
included with EditPad. This way people who mainly use EditPad for your type of file can use your palette
with your scheme and also use the same palette for other types of files.

Though EditPad allows a different palette to be selected for each file type, users shouldn’t have to spend time
customizing too many palettes. Ideally, they would spend time to create one palette that perfectly suits their
personal tastes and then be able to use it for all their files.

These are the named colors available in the scheme editor:

 Plain text: Body text of the file, part of the file without special function, or identifiers in a
programming language.

 Local link: Clickable link to a file on the user’s computer or local network. Only use this color for
scheme elements with an action to open the file.

 Internet link: Clickable link to a web page, file or email address. Only use this color for scheme
elements with an action to open a file or URL, or start an email.

 Emphasis: Text in a document that will appear in italics when the document is printed or published.

 Strong: Text in a document that will appear bold when the document is printed or published.

 Strong emphasis: Text in a document that will appear bold and in italics when the document is
printed or published.

 Underline: Text in a document that will appear underlined with the document is printed or published.

 Redacted: Text that will not appear at all when the document is printed or published.

 Label: An indicator that does not need emphasis, such as a fixed label before the actual data.

 Caption: An indicator that can use some emphasis, such as a subsection header or a title.

 Markup tag: Opening or closing tag in markup languages.

 Markup tag attribute: Attribute name in markup languages.

 Markup tag attribute value: Attribute value in markup languages.

 Markup tag delimiter: Punctuation that starts or ends a tag in markup languages.

 Markup entity: An entity name or a numeric character reference in markup languages.

 Comment: Human-readable text used for information only.

 Documentation comment: Human-readable text of particular importance, used for information only.

 Preprocessor statement: Any kind of meta-information, such as compiler and preprocessor
directives.

 Reserved word: Words or character combinations with a specific meaning and specific use, such as
keywords in a programming language.

 Function name: The name of a (built-in) function call in a programming language, or a reference in a
document.

 Variable name: The name of a (built-in) variable in a programming language, or a placeholder for a
changeable value or macro in a document.

 Type name: The name of a (built-in) type or class in a programming language.

 Constant name: The name of a (built-in) constant in a programming language, or a fixed placeholder
in a document.

 Constant value: A literal value that does not fit one of the following literal types.

 Character: A single human-readable character (letter). Can also be used for escaped characters within
character strings.

 Character string: Human-readable text to be processed by software.

 Text pattern: A text pattern such as wild cards or a regular expression.

 Integer number: A whole number. Could be decimal, hexadecimal, octal, or binary.

 Floating point number: A number with a fractional part and/or an exponent.

31

 Date and time: Any date or time.

 Address: Text defining the location of a file or server, such as an IP address or URI. Use this for
scheme elements that do not have an action to open or navigate to the address.

 Operator: Any kind of mathematical operator or other symbol with a specific meaning or effect.

 Bracket: Round, square, or curly brackets used in expressions, such as parentheses and square
brackets in C-style languages.

 Structural brackets: Round, square, or curly brackets used to group statements or items, such as curly
braces in C-style languages.

 Section header: Heading that starts a new section.

 Success message: Message in tool output, a log file, or a report indicating successful completion.

 Hint message: Informative hint message in tool output, a log file, or a report.

 Warning message: Non-fatal warning message in tool output, a log file, or a report.

 Error message: Fatal error message in tool output, a log file, or a report.

 Markup highlight: Highlight color for subschemes that highlight markup in files that do not
predominantly consist of markup.

 Code highlight: Highlight color for subschemes that highlight procedural code in files that do not
predominantly consist of procedural code.

 Fountain highlight 1 to 10: Can be used in specialized schemes to make up to 10 different kinds of
items stand out, such as to highlight different kinds of entries in log files.

If you must create a custom palette because your file format uses concepts that can't be reasonably matched
to these named colors, then the 10 fountain colors are the colors you should cannibalize first.

32

11. RGB Preview

You can set “apply detail” of any scheme element to “RGB preview” to make the regex match determine the
color of the scheme element. Unlike actual “detail” subschemes, “RGB preview” only changes the element’s
color. It does not override or disable any other of the element’s settings.

The element’s named color is used as a fallback if the preview failed or if the user has disabled it. RGB
preview can be disabled in the file type configuration in EditPad. It cannot be disabled in the scheme editor
or in AceText.

For RGB preview to work, the scheme element’s regular expression needs to contain specific named
capturing groups. If it does not, clicking the Preview button in the scheme editor gives you an error
message that tells you which named capturing groups are needed.

1. A group named “CSS” that matches a CSS color constant like #639 or #663399 or rebeccapurple.
2. A group named “RGB” that matches a 24-bit hexadecimal number like FFA000 for orange.
3. A group named “BGR” that matches a 24-bit hexadecimal number like 00A0FF for orange.
4. 3 groups named “R”, “G”, and “B” that match hexadecimal numbers between 0 and FF.
5. 3 groups named “Rd”, “Gd”, and “Bd” that match decimal numbers between 0 and 255.
6. 3 groups named “Rp”, “Gp”, and “Bp” that match decimal numbers between 0 and 100.

Remember that capturing group names are case sensitive. Leading zeros are optional when using 3 groups
to separate the color components. Numbers between 0 and FF or 255 are interpreted as 8-bit RGB values.
Numbers between 0 and 100 are interpreted as percentages.

The regular expression needs only needs one of the six groups or group trios in the list. If it has one of the
groups from a trio, then it must have all three. The regular expression may have multiple of the six groups or
trios in the list. In that case, for each regex match, the group(s) highest in the list that actually matched
anything is used. If the match of that group or those 3 groups does not fit the expected format, then the RGB
preview fails and the element’s named color is used.

If the RGB preview succeeds, then the background color of the element is set to the RGB values retrieved
from the regex match. The text color is set to a color that contrasts well with the background color to keep it
readable. The shade of the text color will match the shade of the background color. This particularly helps to
distinguish between different dark color shades that would otherwise be hard to distinguish behind the
brighter text.

CSS.jgcscs uses RGB preview to highlight anything that looks like a CSS color reference in CSS properties.
HTML.jgcscs does the same in HTML attribute values.

33

12. Path Placeholders

Path placeholders can be used for the action parameters in scheme elements. The full path they are expanded
from is the full path to the file that is being colored using your syntax coloring scheme. The file
C:\data\files\web\log\foo.bar.txt is used in this example.

It is possible that an unsaved file is being colored. In that case, all the placeholders below will be replaced
with nothing. In EditPad Pro, the file can also be part of a project. In that case, you can use
%PROJECTFILE%, %PROJECTPATH%, etc. to use part of the path to the project file. Again, if the
project is unsaved, these placeholders are replaced with nothing. You can mix file and project placeholders as
you like.

You can use these placeholders to convert relative paths to absolute paths. If you have a scheme element that
uses the regex include "([a-zA-Z0-9.]+)", you can specify %PATH%\\\1 as the file to be opened. The
first two backslashes are replaced by a single backlash, and \1 is replaced by the text matched by the
capturing group in the regex.

Placeholder Meaning Example

%FILE% The entire path plus filename to the file C:\data\files\web\log\foo.bar.txt

%FILENAME% The file name without path foo.bar.txt

%FILENAMENOEXT% The file name without the extension foo.bar

%FILENAMENODOT% The file name cut off at the first dot foo

%FILEEXT%
The extension of the file name without
the dot

txt

%FILELONGEXT%
Everything in the file name after the
first dot

bar.txt

%PATH%
The full path without trailing delimiter
to the file

C:\data\files\web\log

%DRIVE%
The drive the file is on, without trailing
delimiter

C: for drive letter paths; \\server for
UNC paths

%FOLDER%
The full path without the drive and
without leading or trailing delimiters

data\files\web\log

%FOLDER1% First folder in the path data

%FOLDER2% Second folder in the path files

(...etc...)

%FOLDER99% 99th folder in the path. (nothing)

%FOLDER<1% Last folder in the path log

%FOLDER<2% Second folder from the end in the path web

(...etc...)

%FOLDER<99% 99th folder from the end in the path. (nothing)

%PATH1%
First folder in the path, without
delimiters

data

%PATH2% First two folders in the path, without data\files

34

leading or trailing delimiters

(...etc...)

%PATH99%
First 99 folders in the path, without
leading or trailing delimiters

data\files\web\log

%PATH<1%
Last folder in the path, without
delimiters

log

%PATH<2%
Last two folders in the path, without
leading or trailing delimiters

web\log

(...etc...)

%PATH<99%
Last 99 folders in the path, without
leading or trailing delimiters

data\files\web\log

%PATH-1%
Path without the drive or the first
folder

files\web\log

%PATH-2%
Path without the drive or the first two
folders

web\log

(...etc...)

%PATH-99%
Path without the drive or the first 99
folders.

(nothing)

%PATH<-1% Path without the drive or the last folder data\files\web

%PATH<-2%
Path without the drive or the last two
folders

data\files

(...etc...)

%PATH<-99%
Path without the drive or the last 99
folders.

(nothing)

35

13. Legacy Brackets

For new syntax coloring schemes, you should define brackets as part of the coloring scheme instead of
defining them separately in the Legacy Brackets section. The Legacy Brackets section is still available for
backwards compatibility with old syntax coloring schemes. The settings in the Legacy Brackets section are
only used if none of the elements in the coloring scheme or subschemes define any brackets. Legacy Brackets
do not support automatic insertion of matching brackets.

Any pair of characters can be used as brackets. Brackets can consist of multiple characters. If two or more
pairs of brackets start with the same character(s), enter the longest of the two first. The list of brackets is
processed from top to bottom when the software tries to determine which bracket the text cursor points at.

Specify the character(s) that are the opening and closing brackets of a bracket pair. These character sequences
are used as they are. You cannot use regular expressions to define legacy brackets. If you want to use regular
expressions, define your brackets as part of the syntax coloring scheme instead of using the Legacy Brackets
section.

The nesting checkbox determines whether the brackets nest or not. The nesting function only looks for
opening and closing brackets of the pair it is trying to match. It does not take into account other kinds of
brackets that you may have defined. If you want other kinds of brackets to be taken into account, define your
brackets as part of the syntax coloring scheme instead of using the Legacy Brackets section and use the
“bracket nesting” setting to define which bracket pairs should be correctly nested within each other.

Finally, select the range the software should search through when looking for the bracket that matches the
one under the text cursor. If an opening bracket is under the cursor, the software only searches the text after
the bracket. In case of a closing bracket, only the text before the closing bracket is searched. If you select
“everywhere”, all text before or after the bracket is searched. Otherwise, only text that has particular colors
applied to it is searched.

 Within a single element: The software will only search inside the block of text that contains the
bracket under the cursor, and was matched by a single scheme element. It will not search through
other blocks of text matched by the same scheme element. For example, if you have a scheme
element that matches a string, only brackets that can be matched inside a single string will be
highlighted.

 At the edges of a single element: A pair of brackets will only be highlighted if the opening bracket
can be found at the very start of a single block of text matched by a scheme element, and the closing
bracket at the end of it. For example, if you have a scheme element that matches a string, you can use
this option to match the quote characters at the edge of the string as brackets. In this situation, the
opening and closing bracket are usually identical (i.e. a single quote or a double quote). The “at the
edges” options are the only way to make sure the quotes are properly paired.

 Throughout identical elements: Both the opening bracket and the closing bracket must have been
highlighted by the same scheme element. Unlike the “within a single element” option, the brackets
do not need to be inside the same block of text. If the scheme element highlighted several blocks of
text, all of them are searched.

 Within a single subscheme: The software will search through a single block of text that was colored
by scheme elements in the same subscheme (or the main part of the scheme) as the element that
colored the bracket under the cursor. The software stops searching when it encounters text colored
by scheme elements from another subscheme.

36

 At the edges of a single subscheme: Like “within a single subscheme”, except that the brackets must
be found at the edges of the block of text colored by a single subscheme. There is one exception.
The opening bracket may be colored by a scheme element of another subscheme (or the main
scheme) that toggled to the subscheme highlighting the block. For example, if you have an element
in the main scheme matching a quote character, and that element switches to a subscheme for
highlighting a string until the next quote, you can match the opening and closing quote of a string
with the “at the edges of a single subscheme” option.

 Throughout identical subschemes: The software will search through any text that was colored by any
scheme element that is part of the same subscheme as the element that colored the bracket under the
cursor.

	Table of Contents
	1. Introduction
	2. General Information
	3. Reliable Coloring Schemes
	4. Fast Coloring Schemes
	Help From The Scheme Editor
	Examples

	5. Breaking Schemes
	Testing Breaking Schemes
	Examples

	6. Preview And Test
	7. Coloring Scheme
	Scheme Elements

	8. Subschemes
	Detail
	Toggle
	Toggle Until End of Line
	Toggle within Detail
	Include

	9. Regular Expressions
	10. Working with Named Colors
	11. RGB Preview
	12. Path Placeholders
	13. Legacy Brackets

